3.3.3 \(\int \frac {1}{(a+b x^2)^{3/2} \sqrt {a^2-b^2 x^4}} \, dx\) [203]

3.3.3.1 Optimal result
3.3.3.2 Mathematica [A] (verified)
3.3.3.3 Rubi [A] (verified)
3.3.3.4 Maple [B] (verified)
3.3.3.5 Fricas [A] (verification not implemented)
3.3.3.6 Sympy [F]
3.3.3.7 Maxima [F]
3.3.3.8 Giac [F]
3.3.3.9 Mupad [F(-1)]

3.3.3.1 Optimal result

Integrand size = 28, antiderivative size = 125 \[ \int \frac {1}{\left (a+b x^2\right )^{3/2} \sqrt {a^2-b^2 x^4}} \, dx=\frac {x \left (a-b x^2\right )}{4 a^2 \sqrt {a+b x^2} \sqrt {a^2-b^2 x^4}}+\frac {3 \sqrt {a-b x^2} \sqrt {a+b x^2} \arctan \left (\frac {\sqrt {2} \sqrt {b} x}{\sqrt {a-b x^2}}\right )}{4 \sqrt {2} a^2 \sqrt {b} \sqrt {a^2-b^2 x^4}} \]

output
1/4*x*(-b*x^2+a)/a^2/(b*x^2+a)^(1/2)/(-b^2*x^4+a^2)^(1/2)+3/8*arctan(x*2^( 
1/2)*b^(1/2)/(-b*x^2+a)^(1/2))*(-b*x^2+a)^(1/2)*(b*x^2+a)^(1/2)/a^2*2^(1/2 
)/b^(1/2)/(-b^2*x^4+a^2)^(1/2)
 
3.3.3.2 Mathematica [A] (verified)

Time = 2.33 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.89 \[ \int \frac {1}{\left (a+b x^2\right )^{3/2} \sqrt {a^2-b^2 x^4}} \, dx=\frac {\sqrt {a^2-b^2 x^4} \left (2 \sqrt {b} x \sqrt {a-b x^2}+3 \sqrt {2} \left (a+b x^2\right ) \arctan \left (\frac {\sqrt {2} \sqrt {b} x}{\sqrt {a-b x^2}}\right )\right )}{8 a^2 \sqrt {b} \sqrt {a-b x^2} \left (a+b x^2\right )^{3/2}} \]

input
Integrate[1/((a + b*x^2)^(3/2)*Sqrt[a^2 - b^2*x^4]),x]
 
output
(Sqrt[a^2 - b^2*x^4]*(2*Sqrt[b]*x*Sqrt[a - b*x^2] + 3*Sqrt[2]*(a + b*x^2)* 
ArcTan[(Sqrt[2]*Sqrt[b]*x)/Sqrt[a - b*x^2]]))/(8*a^2*Sqrt[b]*Sqrt[a - b*x^ 
2]*(a + b*x^2)^(3/2))
 
3.3.3.3 Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.90, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {1396, 296, 291, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+b x^2\right )^{3/2} \sqrt {a^2-b^2 x^4}} \, dx\)

\(\Big \downarrow \) 1396

\(\displaystyle \frac {\sqrt {a-b x^2} \sqrt {a+b x^2} \int \frac {1}{\sqrt {a-b x^2} \left (b x^2+a\right )^2}dx}{\sqrt {a^2-b^2 x^4}}\)

\(\Big \downarrow \) 296

\(\displaystyle \frac {\sqrt {a-b x^2} \sqrt {a+b x^2} \left (\frac {3 \int \frac {1}{\sqrt {a-b x^2} \left (b x^2+a\right )}dx}{4 a}+\frac {x \sqrt {a-b x^2}}{4 a^2 \left (a+b x^2\right )}\right )}{\sqrt {a^2-b^2 x^4}}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\sqrt {a-b x^2} \sqrt {a+b x^2} \left (\frac {3 \int \frac {1}{\frac {2 a b x^2}{a-b x^2}+a}d\frac {x}{\sqrt {a-b x^2}}}{4 a}+\frac {x \sqrt {a-b x^2}}{4 a^2 \left (a+b x^2\right )}\right )}{\sqrt {a^2-b^2 x^4}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\sqrt {a-b x^2} \sqrt {a+b x^2} \left (\frac {3 \arctan \left (\frac {\sqrt {2} \sqrt {b} x}{\sqrt {a-b x^2}}\right )}{4 \sqrt {2} a^2 \sqrt {b}}+\frac {x \sqrt {a-b x^2}}{4 a^2 \left (a+b x^2\right )}\right )}{\sqrt {a^2-b^2 x^4}}\)

input
Int[1/((a + b*x^2)^(3/2)*Sqrt[a^2 - b^2*x^4]),x]
 
output
(Sqrt[a - b*x^2]*Sqrt[a + b*x^2]*((x*Sqrt[a - b*x^2])/(4*a^2*(a + b*x^2)) 
+ (3*ArcTan[(Sqrt[2]*Sqrt[b]*x)/Sqrt[a - b*x^2]])/(4*Sqrt[2]*a^2*Sqrt[b])) 
)/Sqrt[a^2 - b^2*x^4]
 

3.3.3.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 296
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d)) 
), x] + Simp[(b*c + 2*(p + 1)*(b*c - a*d))/(2*a*(p + 1)*(b*c - a*d))   Int[ 
(a + b*x^2)^(p + 1)*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, q}, x] && N 
eQ[b*c - a*d, 0] && EqQ[2*(p + q + 2) + 1, 0] && (LtQ[p, -1] ||  !LtQ[q, -1 
]) && NeQ[p, -1]
 

rule 1396
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x 
_Symbol] :> Simp[(a + c*x^(2*n))^FracPart[p]/((d + e*x^n)^FracPart[p]*(a/d 
+ c*(x^n/e))^FracPart[p])   Int[u*(d + e*x^n)^(p + q)*(a/d + (c/e)*x^n)^p, 
x], x] /; FreeQ[{a, c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 + a* 
e^2, 0] &&  !IntegerQ[p] &&  !(EqQ[q, 1] && EqQ[n, 2])
 
3.3.3.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(487\) vs. \(2(101)=202\).

Time = 0.23 (sec) , antiderivative size = 488, normalized size of antiderivative = 3.90

method result size
default \(-\frac {\sqrt {-b^{2} x^{4}+a^{2}}\, b^{\frac {5}{2}} \left (3 \ln \left (\frac {2 b \left (\sqrt {2}\, \sqrt {a}\, \sqrt {-b \,x^{2}+a}-\sqrt {-a b}\, x +a \right )}{b x -\sqrt {-a b}}\right ) \sqrt {2}\, b^{\frac {3}{2}} x^{2} \sqrt {a}-3 \ln \left (\frac {2 b \left (\sqrt {2}\, \sqrt {a}\, \sqrt {-b \,x^{2}+a}+\sqrt {-a b}\, x +a \right )}{b x +\sqrt {-a b}}\right ) \sqrt {2}\, b^{\frac {3}{2}} x^{2} \sqrt {a}+3 \ln \left (\frac {2 b \left (\sqrt {2}\, \sqrt {a}\, \sqrt {-b \,x^{2}+a}-\sqrt {-a b}\, x +a \right )}{b x -\sqrt {-a b}}\right ) \sqrt {2}\, a^{\frac {3}{2}} \sqrt {b}-3 \ln \left (\frac {2 b \left (\sqrt {2}\, \sqrt {a}\, \sqrt {-b \,x^{2}+a}+\sqrt {-a b}\, x +a \right )}{b x +\sqrt {-a b}}\right ) \sqrt {2}\, a^{\frac {3}{2}} \sqrt {b}+4 \arctan \left (\frac {\sqrt {b}\, x}{\sqrt {-b \,x^{2}+a}}\right ) b \,x^{2} \sqrt {-a b}-4 \arctan \left (\frac {\sqrt {b}\, x}{\sqrt {\frac {\left (-b x +\sqrt {a b}\right ) \left (b x +\sqrt {a b}\right )}{b}}}\right ) b \,x^{2} \sqrt {-a b}-4 \sqrt {-b \,x^{2}+a}\, \sqrt {b}\, \sqrt {-a b}\, x +4 \arctan \left (\frac {\sqrt {b}\, x}{\sqrt {-b \,x^{2}+a}}\right ) a \sqrt {-a b}-4 \arctan \left (\frac {\sqrt {b}\, x}{\sqrt {\frac {\left (-b x +\sqrt {a b}\right ) \left (b x +\sqrt {a b}\right )}{b}}}\right ) a \sqrt {-a b}\right )}{4 \sqrt {b \,x^{2}+a}\, \sqrt {-b \,x^{2}+a}\, \left (-\sqrt {-a b}+\sqrt {a b}\right )^{2} \left (\sqrt {-a b}+\sqrt {a b}\right )^{2} \left (b x +\sqrt {-a b}\right ) \left (b x -\sqrt {-a b}\right ) \sqrt {-a b}}\) \(488\)

input
int(1/(b*x^2+a)^(3/2)/(-b^2*x^4+a^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/4*(-b^2*x^4+a^2)^(1/2)*b^(5/2)*(3*ln(2*b*(2^(1/2)*a^(1/2)*(-b*x^2+a)^(1 
/2)-(-a*b)^(1/2)*x+a)/(b*x-(-a*b)^(1/2)))*2^(1/2)*b^(3/2)*x^2*a^(1/2)-3*ln 
(2*b*(2^(1/2)*a^(1/2)*(-b*x^2+a)^(1/2)+(-a*b)^(1/2)*x+a)/(b*x+(-a*b)^(1/2) 
))*2^(1/2)*b^(3/2)*x^2*a^(1/2)+3*ln(2*b*(2^(1/2)*a^(1/2)*(-b*x^2+a)^(1/2)- 
(-a*b)^(1/2)*x+a)/(b*x-(-a*b)^(1/2)))*2^(1/2)*a^(3/2)*b^(1/2)-3*ln(2*b*(2^ 
(1/2)*a^(1/2)*(-b*x^2+a)^(1/2)+(-a*b)^(1/2)*x+a)/(b*x+(-a*b)^(1/2)))*2^(1/ 
2)*a^(3/2)*b^(1/2)+4*arctan(b^(1/2)*x/(-b*x^2+a)^(1/2))*b*x^2*(-a*b)^(1/2) 
-4*arctan(b^(1/2)*x/(1/b*(-b*x+(a*b)^(1/2))*(b*x+(a*b)^(1/2)))^(1/2))*b*x^ 
2*(-a*b)^(1/2)-4*(-b*x^2+a)^(1/2)*b^(1/2)*(-a*b)^(1/2)*x+4*arctan(b^(1/2)* 
x/(-b*x^2+a)^(1/2))*a*(-a*b)^(1/2)-4*arctan(b^(1/2)*x/(1/b*(-b*x+(a*b)^(1/ 
2))*(b*x+(a*b)^(1/2)))^(1/2))*a*(-a*b)^(1/2))/(b*x^2+a)^(1/2)/(-b*x^2+a)^( 
1/2)/(-(-a*b)^(1/2)+(a*b)^(1/2))^2/((-a*b)^(1/2)+(a*b)^(1/2))^2/(b*x+(-a*b 
)^(1/2))/(b*x-(-a*b)^(1/2))/(-a*b)^(1/2)
 
3.3.3.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 297, normalized size of antiderivative = 2.38 \[ \int \frac {1}{\left (a+b x^2\right )^{3/2} \sqrt {a^2-b^2 x^4}} \, dx=\left [\frac {4 \, \sqrt {-b^{2} x^{4} + a^{2}} \sqrt {b x^{2} + a} b x - 3 \, \sqrt {2} {\left (b^{2} x^{4} + 2 \, a b x^{2} + a^{2}\right )} \sqrt {-b} \log \left (-\frac {3 \, b^{2} x^{4} + 2 \, a b x^{2} - 2 \, \sqrt {2} \sqrt {-b^{2} x^{4} + a^{2}} \sqrt {b x^{2} + a} \sqrt {-b} x - a^{2}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right )}{16 \, {\left (a^{2} b^{3} x^{4} + 2 \, a^{3} b^{2} x^{2} + a^{4} b\right )}}, \frac {2 \, \sqrt {-b^{2} x^{4} + a^{2}} \sqrt {b x^{2} + a} b x - 3 \, \sqrt {2} {\left (b^{2} x^{4} + 2 \, a b x^{2} + a^{2}\right )} \sqrt {b} \arctan \left (\frac {\sqrt {2} \sqrt {-b^{2} x^{4} + a^{2}} \sqrt {b x^{2} + a} \sqrt {b}}{2 \, {\left (b^{2} x^{3} + a b x\right )}}\right )}{8 \, {\left (a^{2} b^{3} x^{4} + 2 \, a^{3} b^{2} x^{2} + a^{4} b\right )}}\right ] \]

input
integrate(1/(b*x^2+a)^(3/2)/(-b^2*x^4+a^2)^(1/2),x, algorithm="fricas")
 
output
[1/16*(4*sqrt(-b^2*x^4 + a^2)*sqrt(b*x^2 + a)*b*x - 3*sqrt(2)*(b^2*x^4 + 2 
*a*b*x^2 + a^2)*sqrt(-b)*log(-(3*b^2*x^4 + 2*a*b*x^2 - 2*sqrt(2)*sqrt(-b^2 
*x^4 + a^2)*sqrt(b*x^2 + a)*sqrt(-b)*x - a^2)/(b^2*x^4 + 2*a*b*x^2 + a^2)) 
)/(a^2*b^3*x^4 + 2*a^3*b^2*x^2 + a^4*b), 1/8*(2*sqrt(-b^2*x^4 + a^2)*sqrt( 
b*x^2 + a)*b*x - 3*sqrt(2)*(b^2*x^4 + 2*a*b*x^2 + a^2)*sqrt(b)*arctan(1/2* 
sqrt(2)*sqrt(-b^2*x^4 + a^2)*sqrt(b*x^2 + a)*sqrt(b)/(b^2*x^3 + a*b*x)))/( 
a^2*b^3*x^4 + 2*a^3*b^2*x^2 + a^4*b)]
 
3.3.3.6 Sympy [F]

\[ \int \frac {1}{\left (a+b x^2\right )^{3/2} \sqrt {a^2-b^2 x^4}} \, dx=\int \frac {1}{\sqrt {- \left (- a + b x^{2}\right ) \left (a + b x^{2}\right )} \left (a + b x^{2}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(1/(b*x**2+a)**(3/2)/(-b**2*x**4+a**2)**(1/2),x)
 
output
Integral(1/(sqrt(-(-a + b*x**2)*(a + b*x**2))*(a + b*x**2)**(3/2)), x)
 
3.3.3.7 Maxima [F]

\[ \int \frac {1}{\left (a+b x^2\right )^{3/2} \sqrt {a^2-b^2 x^4}} \, dx=\int { \frac {1}{\sqrt {-b^{2} x^{4} + a^{2}} {\left (b x^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(1/(b*x^2+a)^(3/2)/(-b^2*x^4+a^2)^(1/2),x, algorithm="maxima")
 
output
integrate(1/(sqrt(-b^2*x^4 + a^2)*(b*x^2 + a)^(3/2)), x)
 
3.3.3.8 Giac [F]

\[ \int \frac {1}{\left (a+b x^2\right )^{3/2} \sqrt {a^2-b^2 x^4}} \, dx=\int { \frac {1}{\sqrt {-b^{2} x^{4} + a^{2}} {\left (b x^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(1/(b*x^2+a)^(3/2)/(-b^2*x^4+a^2)^(1/2),x, algorithm="giac")
 
output
integrate(1/(sqrt(-b^2*x^4 + a^2)*(b*x^2 + a)^(3/2)), x)
 
3.3.3.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+b x^2\right )^{3/2} \sqrt {a^2-b^2 x^4}} \, dx=\int \frac {1}{\sqrt {a^2-b^2\,x^4}\,{\left (b\,x^2+a\right )}^{3/2}} \,d x \]

input
int(1/((a^2 - b^2*x^4)^(1/2)*(a + b*x^2)^(3/2)),x)
 
output
int(1/((a^2 - b^2*x^4)^(1/2)*(a + b*x^2)^(3/2)), x)